Эйнштейн-School
Корень степени n > 1 и его свойства

Предположим, Вы имеете уравнение вида:

Решением данного уравнения будет х1 = 2 и х2 = (-2). В качестве ответа подходят оба решения, поскольку числа с равными модулями при возведении в четную степень дают одинаковый результат.

Это был простой пример, однако, что мы можем сделать в том случае, если, например,

Давайте попробуем построить график функции y=x2. Её графиком является парабола:

На графике необходимо найти точки, которым соответствует значение у = 3. Данными точками является:

Это означает, что данное значение нельзя назвать целым числом, но можно представить в виде корня квадратного.

Любой корень — это иррациональное число. К иррациональным числам относятся корни, непериодические бесконечные дроби.

Квадратный корень — это неотрицательное число «а», подкоренное выражение которого равно данному числу «а» в квадрате.

Например,

То есть в результате мы получим только положительное значение. Однако в качестве решения квадратного уравнения вида

Решением будет х1 = 4, х2 = (-4).

Свойства квадратного корня

1. Какое бы значение не принимала величина x, данное выражение верно в любом случае:

2. Сравнение чисел, содержащих квадратный корень. Чтобы сравнить данные числа, необходимо и одно, и второе число внести под знак корня. То число будет больше, чье подкоренное выражение больше.

Вносим число 2 под знак корня

А теперь давайте внесем число 4 под знак корня. В результате этого получим

И только теперь два полученных выражения можно сравнить:

3. Вынесение множителя из под корня.

Если подкоренное выражение может разложиться на два множителя, один из которых можно вынести из под знака корня, то необходимо пользоваться данным правилом.

4. Существует свойство, обратное данному — внесение множителя под корень. Этим свойством мы заведомо воспользовались во втором свойстве:

Корень степени n > 1

Под корнем n-ой степени некоторого числа «a» понимают число, которое при возведении в степень «n» даст число «а».

Иными словами можно сказать, что это решение следующего уравнения:

Например,

Если под корнем некоторой степени стоит степень, то для вынесения данного числа из под знака корня следует показатель степени разделить на степень корня.

Степень с целым показателем

Под степенью некоторого числа «а» с некоторым показателем «n» понимают произведение числа «а» само на себя «n» раз.

Когда говорят о степени с целым показателем, это означает, что число «n» должно быть величиной не дробной. Если данный показатель имеет отрицательное значение, то для начала необходимо избавиться от минуса перед показателем степени, а затем производить действия над степенью.

а — основание степени, которое показывает, какое число следует умножать само на себя, n — показатель степени — он говорит, сколько раз основание нужно умножить само на себя.

Например:

84 = 8 * 8 * 8 * 8 = 4096.

В данном случае под основанием степени понимают число «8», показателем степени считается число «4», под значением степени понимается число «4096». 

Самой большой и распространенной ошибкой при подсчете степени является умножение показателя на основание — ЭТО НЕ ВЕРНО!

Когда речь идет о степени с натуральным показателем, имеется в виду, что только показатель степени (n) должен быть натуральным числом. В качестве основания можно брать любые числа с числовой прямой.

Например,

(-0,1)3 = (-0,1) * (-0,1) * (-0,1) = (-0,001).

Свойства степени

Для удобства решений примеров со степенями необходимо знать основные их свойства:

1. Любое число, которое возводится в показатель степени, равный единице, равно первоначальному числу.

а1 = а.

Например,

51 = 5.

2. При возведении любого числа в степень с показателем ноль, результатом данного вычисления всегда будет единица.

а0 = 1.

Например,

70 = 1.

3. Если Вам необходимо умножить две степени, которые имеют одинаковые основания, то в таком случае основание необходимо оставить без изменения, а показатели сложить.

an * am = an+m.

Например:

52 * 54 = 56.

4. Если необходимо разделить две степени, которые имеют одинаковые основания, то в таком случае основание необходимо оставить без изменения, а показатели вычесть. Обратите внимани, для действий со степенями с натуральным показателем показатель степени делимого должен быть больше показателя степени делителя. В противном случае, частным данного действия будет число с отрицательным показателем степени.

an / am = an-m .

Например,

54 : 52 = 52.

5. Если необходимо возвести одну степень в другую, основанием результата останется то же число, а показатели степени перемножаются.

(an )m = an*m

Например,

(54 )2 = 58.

6. Если в некоторую степень необходимо возвести произведение произвольных чисел, то можно воспользоваться неким распределительным законом, при котором получим произведение различных оснований в одной и той же степени.

(a * b)m = am * bm.

Например,

(5 * 8 )2 = 52 * 82.

7. Аналогичное свойство можно применять для деления степеней, иначе говоря, для возведения обыкновенной двоби в степень.

(a / b)m = am / bm

8. Если некоторая дробь имеет отрицательный показатель степени, то для избавления от знака минуса, её следует перевернуть.

Например,

Очень важно помнить, что знак степени не влияет на знак выражения при возведении в степень.

9. Если Вы возводите отрицательное число в четную степень, то в результате Вы всегда получите положительное число. Если же необходимо возвести отрицательное число в нечетную степень, то результатом данного математического действия будет отрицательное число.

Например,

(-11)2 = 121,

(-3)3 = (-27).

Дроби, проценты, рациональные числа

Рациональные числа — это те, которые можно выразить в виде обыкновенной дроби.

Несмотря на то, что все мы очень не любим дроби, они широко распространены в быту. Например, Вы делитесь со своим братом шоколадкой пополам, это означает, что каждому из Вас досталось по половине. Математическая запись «половины» — это 1/2. Если Вы решили поделиться тортом с тремя друзьями, это означает, что Вам его следует разделить на четыре части. Математически это можно записать так — каждый получит 1/4 от торта.

Итак, что же все-таки такое дроби?

Дробь — число, которое показывает некоторое количество долей целого, то есть единицы. 

Дроби могут быть десятичные и обыкновенные. В качестве математического действия, дробь — это, ничто иное, как деление. Любая дробь состоит из числителя (делимого), который находится вверху, знаменателя (делителя), который находится внизу, и черты дроби, которая выполняет непосредственно функцию деления. Знаменатель дроби показывает, на сколько равных частей делят некоторое целое. Числитель показывает, сколько равных частей из целого было взято.

Дробь может быть смешанной, то есть иметь и дробную и целую часть.

Например, 1; 5,03.

Обыкновенная дробь может иметь произвольный числитель и знаменатель.

Например, 1/5, 4/7, 7/11 и т.д.

Десятичная дробь в знаменателе всегда имеет числа 10, 100, 1000, 10000 и т.д.

Например, 1/10 = 0,1; 6/100 = 0,06 и т.д.

Над дробями можно производить те же математические действия, что и над целыми числами:

1. Сложение и вычитание дробей

Нельзя складывать и вычитать те дроби, что имеют разные знаменатели. Чтобы произвести данное действие следует привести слагаемые к общему знаменателю. Для этого следует найти наименьшее общее кратное. Например,

Для данных дробей наименьшим числом, которое делится на один и второй знаменатель, является число 30.

Чтобы привести обе дроби к знаменателю 30, следует найти дополнительный множитель. Чтобы в первой дроби получить знаменатель 30, её следует умножить на 6. Чтобы во второй дроби получить знаменатель 30, её следует умножить на 5. Чтобы значение дроби не изменилось, на данные числа умножаем и числитель, и знаменатель. В результате этого получаем:

Чтобы сложить или вычесть числа с одинаковыми знаменателями, следует в результате оставить знаменатель 30, а числители сложить:

2. Умножение дробей

При умножении двух дробей, следует перемножить их числители, после чего перемножить знаменатели, и записать результат:

3. Деление дробей

При делении двух дробей необходимо вторую дробь перевернуть и выполнить действие умножение:

4. Сокращение дробей

Если числитель и знаменатель кратный некоторому одинаковому числу, то такую дробь можно сократить, разделив и числитель, и знаменатель на данное число.

В первоначальной дроби и числитель, и знаменатель делится на число 3, поэтому всю дробь можно сократить на данное число.

5. Сравнение дробей

При сравнении дробей необходимо пользоваться несколькими правилами:

Если происходит сравнение дробей, которые имеют одинаковый знаменатель, но разный числитель, то больше будет та дробь, у которой больше числитель. То есть данное сравнение сводится к сравнению числителей.

Если дроби имеют одинаковые числители, но различные знаменатели, то необходимо сравнить знаменатели. Та дробь будет больше, чей знаменатель меньше.

Если дроби имеют разные и числители, и знаменатели, то их необходимо привести к общему знаменателю.

Общий знаменатель — 42, следовательно, дополнительный множитель первой дроби — это 7, а дополнительный множитель для второй дроби — это 6. Получаем:

Теперь сравнение сводится к первому правилу. Больше та дробь, у которой больше числитель:

Проценты

Любое число, которое составляет одну сотую часть от некоторого целого, называют одним процентом.

1% = 1/100 = 0,01.

Чтобы перевести некоторую дробь в процентную запись, её следует перевести в десятичную дробь, а после этого умножить на 100%.

Например,

Проценты используют в трех основных случаях:

1. Если необходимо найти некоторый процент от числа. Представьте себе, что ежемесячно вы получаете 10% от заработной платы Ваших родителей. Однако, если Вы не знаете математики, то не сможете рассчитать, чему будут равны Ваши ежемесячные доходы. Итак, это сделать достаточно просто.

Представим, что Ваши родители ежемесячно получают 100000 рублей. Чтобы найти сумму, которую Вы должны получать ежемесячно, необходимо прибыль родителей разделить на 100 и умножить на 10%, которые Вы должны получить:

100000 : 100 * 10 = 10000 (рублей).

2. Если Вам нужно узнать, какую сумму получают Ваши родители ежемесячно, если Вы знаете, что они Вам дают 6000 рублей, а это, в свою очередь, 3%, то данное действие с процентами называется нахождением числа по его проценту. Для этого необходимо получаемую сумму умножить на 100 и разделить на Ваши проценты:

6000 * 100 : 3 = 200000 (рублей).

3. Если Вы в течение дня выпиваете 1 л воды, а Вам, например, необходимо выпить 2 литра воды, то Вы с легкостью можете найти значение процента выпитой воды. Для этого необходимо 1 л разделить на 2 л и умножить на 100%.

1 : 2 * 100% = 50%.

Степень с натуральным показателем

Когда говорят о степени с натуральным показателем, это означает, что число «n» должно быть целым и не отрицательным.

а — основание степени, которое показывает, какое число следует умножать само на себя, 

n — показатель степени — он говорит, сколько раз основание нужно умножить само на себя.

Например:

84 = 8 * 8 * 8 * 8 = 4096.

В данном случае под основанием степени понимают число «8», показателем степени считается число «4», под значением степени понимается число «4096». 

Самой большой и распространенной ошибкой при подсчете степени является умножение показателя на основание — ЭТО НЕ ВЕРНО!

Когда речь идет о степени с натуральным показателем, имеется в виду, что только показатель степени (n) должен быть натуральным числом. 

В качестве основания можно брать любые числа с числовой прямой.

Например,

(-0,1)3 = (-0,1) * (-0,1) * (-0,1) = (-0,001).

Математическое действие, которое совершается над основанием и показателем степени, называется возведение в степень. 

Сложение \ вычитание — математические действия первой ступени, умножение \ деление — действие второй ступени, возведение степени — это математическое действие третьей ступени, то есть одной из высших. 

Данная иерархия математических действий определяет порядок при расчете. Если данное действие встречается в задачах среди двух предыдущих, то оно делается в первую очередь.

Например:

15 + 6 *22  = 39

В данном примере необходимо сначала возвести 2 в степень, то есть

22 = 4,

затем полученный результат умножить на 6, то есть

4 * 6 = 24,

затем

24 + 15 = 39.

Степень с натуральным показателем используется не только для конкретных вычислений, но и для удобства записи больших чисел. В данном случае еще используется понятие «стандартный вид числа». Данная запись подразумевает умножение некоторого числа от 1 до 9 на основание степени равное 10 с некоторым показателем степени.

Например, для записи радиуса Земли в стандартном виде используют следующую запись:

6400000 м = 6,4 * 106 м,

а масса Земли, например, записывается следующим образом:

6 * 1024 кг.

Свойства степени

Для удобства решений примеров со степенями необходимо знать основные их свойства:

1. Если Вам необходимо умножить две степени, которые имеют одинаковые основания, то в таком случае основание необходимо оставить без изменения, а показатели сложить.

an * am = an+m

Например:

52 * 54 = 56.

2. Если необходимо разделить две степени, которые имеют одинаковые основания, то в таком случае основание необходимо оставить без изменения, а показатели вычесть. Обратите внимани, для действий со степенями с натуральным показателем показатель степени делимого должен быть больше показателя степени делителя. В противном случае, частным данного действия будет число с отрицательным показателем степени.

an / am = an-m 

Например,

54 * 52 = 52.

3. Если необходимо возвести одну степень в другую, основанием результата останется то же число, а показатели степени перемножаются.

(an )m = an*m

Например,

(54 )2 = 58.

4. Если в некоторую степень необходимо возвести произведение произвольных чисел, то можно воспользоваться неким распределительным законом, при котором получим произведение различных оснований в одной и той же степени.

(a * b)m = am * bm

Например,

(5 * 8 )2 = 52 * 82.

5. Аналогичное свойство можно применять для деления степеней, иначе говоря, для возведения обыкновенной двоби в степень.

(a / b)m = am / bm

6. Любое число, которое возводится в показатель степени, равный единице, равно первоначальному числу.

а1 = а

Например,

51 = 5.

7. При возведении любого числа в степень с показателем ноль, результатом данного вычисления всегда будет единица.

а0 = 1

Например,

70 = 1.

Целые числа

К целым числам можно отнести все числа натурального ряда, им противоположные, а также ноль.

То есть это все не дробные положительные, отрицательные числа, а так же ноль — иными словами, все не дробные числа на числовой прямой. Используя термин «натуральные числа» мы понимаем, что это не отрицательные и не дробные числа.

У Вас может возникнуть вопрос, чему же равно максимальное или минимальное целое число — таковых не существует, поскольку числовой ряд бесконечный.

Среди всего множества чисел, целые числа обозначаются буквой Z, а натуральные — N.

Все натуральные числа используются для счета. Например, на дереве висит 5 яблок, стол сервирован на 8 персон. Мы же не можем сказать, что на столе 7,5 тарелок, или у цветка -3 листка. Числа, противоположные натуральным, — это не дробные и отрицательные числа.

Арифметические действия

Существует несколько математических операций, которые можно производить с целыми числами. Хотелось пояснить каждую из них.

1. Сложение / Вычитание

При необходимости сложить два числа, имеющие одинаковые знаки, следует сложить их модули и поставить общий знак. Например,

 |+4| + |+6| = |+10|,

 |-8| + |-3| = |-11|.

Если необходимо сложить целые числа, которые имеют противоположные знаки, следует от числа с большим модулем вычесть второе число. Перед суммой поставить знак большего модуля. Например,

 |-10| + |+3| = |-7|,

 |+5| + |-2| = |+3|.

2. Умножение / Деление

Если следует получить произведение (частное) двух чисел, следует перемножить их модули. Перед произведением (частным) ставится знак «+» в том случае, если перемножались (делились) числа с одинаковыми знаками. Если умножение (деление) происходило между числами с разными знаками, то ставят знак «-«

Например,

 |-5| *  |-6| = |+30|,

 |+3| * |+7| = |+21|,

 |-4| *  |+3| = |-12|.

Основные правила, используемые при делении, умножении, сложении и вычитании целых чисел.

Рассмотрим арифметические действия, которые производятся над тремя целыми числами а, б, с.